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Abstract

The deferred acceptance mechanism (DA) replaced the Boston mechanism (BM) in col-

lege admissions in China. In this paper, I compare the empirical performance of these

two mechanisms in the Chinese context by developing an empirical model and applying

it to college admissions in Guangxi, Hebei, and Sichuan provinces. Then, I conduct

counterfactuals to empirically compare the BM and DA in these three provinces for

given years. I find that not only is the BM superior to the DA in terms of total welfare

but also that most students receive lower utility after the switch from the BM to DA.
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1. Introduction

On June 6 – 8 every year, approximately ten million high school seniors take the college

entrance exam (Gaokao) in China. For most of these young adults, the exam is the most

important they will ever take, and its results will have a profound influence on the rest of

their lives. In each Chinese province, there is a “student placement office” (Zhu, 2014) that

ranks the students in the province based on their exam results and asks them to submit their

college preferences. Each college has an admission quota for each province. The offices use a

variant of either the Boston mechanism (BM, the sequential mechanism or Shunxu Zhiyuan)

or the deferred acceptance mechanism (DA, the parallel mechanism or Pingxing Zhiyuan) to

assign students to colleges according to their exam-grade-based ranking, their preferences,

and the admission quotas.1

Under the BM, students’ first-choice colleges are critical. If a student is rejected by

the first-choice college, she will probably be assigned to a substantially worse college or

even have no assignment. Thus, students must pick their first choice carefully, and many

complain about the risks in the decision-making process. By contrast, under the DA, if a

student is rejected by one of her choices, the next choice will be considered. Since a student’s

admission is guaranteed only if the exam score is above the cutoff threshold2 for one of the

colleges in the preference list, students feel safer under this mechanism. In addition, the

BM has inferior theoretical properties: the DA is Pareto optimum for college admissions in

China3, while the BM is not. Furthermore, the BM is not strategy-proof. Under the BM,

1See Appendix C for details.
2The cutoff threshold is the score of the lowest-ranked student admitted by a college.
3In college admissions in China, all colleges share the same priority for students. This priority is strict.
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students strategically select their preferences; hence, the true college preferences cannot be

determined directly from the data. Due to these drawbacks, the BM was abandoned in

China.4

However, the three disadvantages of the BM mentioned above can be called into question.

First, both mechanisms assign the same number of students to colleges, and the admission

quotas of the colleges remain the same under the two mechanisms. If the preferences of

students are sufficiently homogeneous,5 exchanging assignments between two students would

harm one of them. Thus, not all students would benefit from the switch from the BM to DA

— at least some of the students will sacrifice other benefits to enjoy the safety of the DA.

Second, although the DA is Pareto optimum, it may not yield the highest social welfare when

preferences are cardinal, that is, when students are able to not only prefer one college to

another but strongly prefer one college to another. To the best of my knowledge, the general

performance of the DA under cardinal preference has not been studied. Abdulkadiroğlu,

Che and Yasuda (2011, 2015) have demonstrated that the DA is not the best mechanism

when no priorities exist or when the priorities of students are coarse. Third, although under

the BM the true preferences cannot be learned directly from the data, we can still learn the

preferences after constructing a model of the mechanism. Therefore, the following questions

arise: can we estimate colleges’ quality (or more accurately, their attractiveness) by using

manipulated preference data under the BM? Can we compare the empirical performance

of the BM to that of the DA in China? Can we estimate the welfare loss (or gain) for an

4Before 2001, the BM was implemented in all provinces. The DA was first introduced in Hunan province
in 2001. By 2012, the BM was applied in only three of thirty-one provinces (Chen and Kesten, 2017).

5In China, better colleges not only provide better education but also charge lower tuition fees. In addition,
the quality of the different colleges is common knowledge. Thus, the preferences of students should be
homogeneous.
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individual student when the mechanism switches from the BM to the DA?

In this paper, I develop a model of the BM to recover the true college preferences of

students and then perform welfare analysis. To the best of my knowledge, current models

in the empirical literature (Agarwal and Somaini, 2018; Calsamiglia, Fu and Güell, 2017;

He, 2017; Hwang, 2016) follow coarse school priorities. Such schools do not differentiate

between some of the students; thus, many students share the same priority. In this case,

the number of priorities is small. For example, Agarwal and Somaini (2018) used only three

different priorities for all students. However, in the Chinese case, priorities are strict: colleges

differentiate students based on their scores, and each student has a unique rank. In this case,

the number of priorities is large. The large number of priorities can make the existing models

computationally intractable due to the curse of dimensionality. In addition, the models in the

literature require the preference data of individual students (that is, micro data). However,

in college admissions in China, such data are highly confidential. For example, Li, Gan and

Yang (2010) used such micro data, but they anonymized the names of the provinces due to

the sensitivity of the data. The use of micro data also restricts the future reusability of the

model because the micro data are not always available. I develop a model that can handle

such strict priorities and make estimates using public data: the admission quotas and cutoff

thresholds of the colleges.

I estimate the model using public data from the provinces of Guangxi, Hebei, and Sichuan

and conduct counterfactuals calculating social and individual welfare under the DA. In these

three provinces for the given years, the students apply to colleges after receiving their scores

and are assigned to colleges based on the BM. I find that total welfare under the DA is

1.73% – 6.63% lower than that under the BM. The welfare loss from switching from the
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BM to the DA is a consequence of the cardinal preferences, given that the DA is the Pareto

optimum.6 I also find that the cutoff thresholds under the BM are looser than those under

the DA. Many provinces switching from the BM to DA saw stricter cutoff thresholds after

switching.7 This change reveals the cost of students’ enjoying increased safety under the DA:

It becomes more difficult to receive admission if one’s rank is not competitive. Intuitively,

“good” students benefit from increased safety under the DA, while “bad” students suffer

from stricter cutoff thresholds. However, how good should a “good” student be? According

to my results, only 0.64% – 10.65% of students above the key cutoff threshold8 benefit from

mechanism switching in Round 1 admission; most students suffer from switching.

The rest of this paper is organized as follows, I review the literature in Section 2. I present

an example in Section 3. The model to recover true preferences is presented in Section 4.

I describe the data in Section 5 and present the results in Section 6. Finally, Section 7

concludes the paper.

2. Literature

Abdulkadiroglu and Sönmez (2003) analyzed the school choice problem in terms of mecha-

nism design. They defined the “justified envy” that occurs when a student prefers another

school to her assigned school while the preferred school admits someone with lower priority

than her priority. They argue that any mechanism without justified envy is Pareto domi-

nated by the DA and that any mechanism, including the DA, is Pareto dominated by the

6See Section 3 for an example.
7See, e.g., http://news.sohu.com/20140713/n402175085.shtml.
8The key cutoff threshold is the threshold for students to be considered for admission in Round 1.
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top trading cycle (TTC) mechanism. In college admissions in China, a given student has

the same priority in any college since colleges rank students based only on their total scores.

That is, the DA and TTC are equivalent; therefore, the DA is Pareto efficient and free of

justified envy. Ergin and Sönmez (2006) demonstrate that the DA is more efficient than the

BM. They provide an example with two regions (region M and region N) and three schools

(school L, school M , and school N). All students prefer school M and N to school L, and

students prefer school M (or N) if they live in region N (or M , respectively). However,

students who live in region M (or N) have higher priority in school M (or N , respectively).

In the DA, students report their preferences truthfully9. Hence, students living in region M

(or N) will be admitted by school N (or M , respectively). In the BM, students are afraid

to report their true preferences and thus do not have the highest priority in their favorite

schools. Students also do not want to be admitted by school L; therefore, to ensure a seat

in school M or N , a student in region M (or N) would choose school M (or N) as her first

choice. However, not all students will be admitted by their favorite schools, and the BM is

not as efficient as the DA. This example relies heavily on the assumption that schools can

rank students differently. If a student has the same priority in all schools, the two mecha-

nisms are equivalent to a mechanism in which students with higher priority choose schools

before the others do10. Thus, Ergin and Sönmez (2006) is unable to show that the DA

performs better than the BM in college admissions in China. Moreover, these two papers

(Abdulkadiroglu and Sönmez, 2003; Ergin and Sönmez, 2006) consider a scenario of complete

information and ordinal preference, in which all information is public and in which students

9Dubins and Freedman (1981) show that students are unable to improve their utility by lying under the
DA.

10This is called the serial dictatorship mechanism.
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can prefer one school to another but cannot strongly prefer one school to another. These

assumptions are not realistic.

Abdulkadiroğlu, Che and Yasuda (2011) considered incomplete information and cardinal

preference and assumed that schools have no priority and that although students have the

same ordinal preference, their cardinal preferences may be different. They showed the BM

performing slightly better than the DA. Abdulkadiroğlu, Che and Yasuda (2015) generalize

this idea, illustrating that the DA is not Pareto efficient when the priorities are coarse

under complete information and cardinal preference. That is, these papers assume that the

priorities are not strict, an assumption that is essential for their results. Unfortunately,

priorities in college admissions in China are strict. Therefore, these theoretical papers do

not apply to the Chinese case.

My paper is related to four previous papers using structural models to compare the two

mechanisms empirically, all of which found that the BM is more efficient than the DA. He

(2017) studied Chinese high school admissions and found that students suffer, regardless of

whether they are näıve or sophisticated, if others perform as in the data after the switch

from the BM to DA. Calsamiglia, Fu and Güell (2017) analyzed public school admissions

in Barcelona, Spain using a counterfactual analysis showing that average welfare decreases

by 1020 euros when switching from the BM to DA. Agarwal and Somaini (2018) scrutinized

public elementary school admissions in Cambridge, MA. They found that the immediate

acceptance mechanism (a variant of the BM) performed better than the DM. Hwang (2016)

proved that both näıve and sophisticated students follow a simple rule, which is used to

partially identify the model. In the empirical application, ex ante welfare was found to be

high in the BM.
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However, the models in all the empirical papers studying the BM follow the coarse schools’

priorities. If the priorities are strict, the number of priorities is large, which makes the

existing models impossible to compute due to the curse of dimensionality. Nevertheless,

models that present strict priorities are still rare in the theoretical literature. Comparing two

mechanisms that fall under strict priorities helps to test the theoretical literature in scenarios

outside their assumptions. In addition, the existing models use the maximum log-likelihood

or the moment inequality for the estimation and thus rely on individual preference data,

which are highly confidential and unavailable in the Chinese case. Thus, departing from the

literature, I develop a BM model that can handle strict priorities and does not require micro

data; the model requires only the admission quotas and cutoff thresholds of the colleges,

which are public knowledge and can be found in the college application guides.

3. Motivating Example

I present an example to illustrate why the welfare loss when switching from the BM to DA is

a consequence of cardinal preferences. Suppose that there are two colleges M and N and five

students x, y, z, w, and r. M will admit one student, and N will admit three students. x is

the top student, y the second, z the third, w the fourth, and r the bottom. M is known to

be a better school than N , but the students do not know other students private preferences.

Thus, y, z, w and r know that x is more likely to choose M but do not know her actual

decision. Further, suppose that x, w and r prefer N , while y and z prefer M . Under the DA,

students will be assigned to the best available colleges: x, z, and w will be admitted to N

and y to M . All other mechanisms are dominated by the DA if the preferences are ordinal;
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by contrast, if the preferences are cardinal, I can further assume that y prefers M slightly,

while z prefers M strongly. Under this assumption, the DA is no longer optimum because

assigning z to M and y to N will yield higher social welfare. Under the BM, y will choose

N because the probability of her admission to M is much lower, and she is nearly indifferent

between the two colleges. Meanwhile, z will choose M because she strongly prefers M : even

if the admission probability is low, she wants to try. In the end, x, y, and w will be assigned

to N , while z will be assigned to M under the BM, yielding higher social welfare than that

under the DA. Intuitively, this result stands: since students are allowed to express their

cardinal preferences under the BM but not under the DA, the BM potentially yields better

social welfare than does the DA.

This example is consistent with our empirical findings. In the example, the cutoff for M

is 3 (at z) under the BM and 2 (at y) under the DA. However, in the results, I find that the

cutoff thresholds under the BM are looser than those under the DA. In addition, intuitively,

“good” students (such as y) will benefit from the increased safety under the DA, while “bad”

students (such as z) will suffer from the stricter cutoff after switching from the BM to DA.

In the results, none of the bottom half of the students above the key cutoff benefit from the

switch.

4. Model

I propose a model to recover the true preferences of students from the data of cutoffs and

admission quotas generated under BM. Suppose that there are L colleges in China. College l
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has quota Al for a given province11. Therefore, the college can admit up to Al students. The

students are ranked: student i is the ith-highest-ranked student. I observe that the lowest-

ranked student admitted by college l is student Nl. Thus, college l has a cutoff threshold (at

student) Nl, with no lower-ranked students admitted. A student is able to observe her own

rank and quotas A (but not cutoffs N ) when submitting the preferences.

Each student has L+1 available choices, including the outside option ({1, 2, . . . , L}
⋃
{∅}).

A student will receive ξl+ εil in utility provided the student is admitted by college l or 0

if assigned to the outside option. Here, ξl is the mean attractiveness 12 of the college to

the students, whereas εil is student i’s private preference in addition to ξl. I further assume

that εil is unknown to other students, but its distribution E remains common knowledge.

Moreover, the students submit their major (disciplinary) preferences for each college that

they choose. A college then assigns students to majors. Students can reject the assignment,

but the rejection may result in their being admitted to much worse colleges. Wu and Zhong

(2014) indicates that almost all the students accept the assignment. Therefore, I can separate

admission into two stages. In the first stage, the students are assigned to colleges, which are

considered as composite goods. In the second stage, the students are assigned to majors.

This argument was proposed by Wu and Zhong (2014). In this paper, I only consider the

first stage. Any major preference for college l of a student is in ξl.

I consider a Bayesian Nash equilibrium. Student i will use a strategy σi(ξ, εil;σ−i, E)

to maximize the expected return. To simplify the model, I further assume that only the

first step of BM is considered. College admission is quite competitive in China, and all

11As described in the Appendix C (page 37), I consider the admission process for each province indepen-
dently, so the model is for one province only. Additionally, I consider only Round 1 admission.

12We use “attractiveness” and “quality” interchangeably in this paper. Indeed, the attractiveness is the
quality of a college as perceived by the students.
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spaces at most colleges are filled in the first step of BM. Then, student i expects to receive

(ξl + εil)P
a
l (i,A; E , σ−i, ξ)13 in utility provided college l is chosen, where Pa

l (i,A) is the

admission probability of student i for college l. A student will apply a strategy to maximize

the expected return. Therefore, student i will choose college l∗ if and only if college l∗

maximizes (ξl + εil)P
a
l (i,A) and the utility is positive. If student i receives negative utility

from choosing all the colleges, he/she will choose the outside option and receive 0 in utility.

Consistent with Fack, Grenet and He (2019); He and Magnac (2018), I also introduce cost

into the application: students will not consider colleges with very small admission probability.

This assumption has little effect on the welfare analysis. Students receive nearly nothing from

choosing a very-low-admission-chance (VLAC, hereafter) college. However, this assumption

technically removes multiple “numerical equilibriums” for the ease of computation: student

i receives very similar utility from a VLAC college and the outside option with a nonzero

probability. Therefore, each student i solves a maximization problem,

max
l


(ξl + εil)P

a
l (i,A)− inf 1

(
P
a
l (i,A) < α

)
, l ≥ 1

0, l = 0

(1)

where α is a small positive number. I also solve Pa
l (i,A) recursively.

Lemma 1. Pa
l (i, Al;A−l)

14 = P
a
l (i−1, Al;A−l)(1−Pc

l (i−1,A))+Pa
l (i−1, Al−1;A−l)P

c
l (i−

1,A) for i ≥ 2 and Al ≥ 1, where Pc
l (i,A) is the chance of student i choosing college l. In

addition, Pa
l (1, Al;A−l) = 1 for Al ≥ 1 and Pa

l (i, 0) = 0 for i ≥ 1.

The proof is in Appendix D.1 on page 40. As an intuitive example, suppose that college l

13Hereafter, slightly abusing the notation, I use Pa
l (i,A) instead of Pa

l (i,A; E , σ−i, ξ).
14
P

a
l (i, Al;A−l) = P

a
l (i,A)
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admits one student (Al = 1). Then, I can simplify the equation as

P
a
l (i, 1;A−l) = P

a
l (i− 1, 1;A−l)(1−Pc

l (i− 1,A)) =
i−1∏
j=1

(
1−Pc

l (j,A)
)

In other words, the probability of student i being admitted is equal to the probability of the

students ranked higher than i not choosing college l if this college admits only one student.

In Lemma 1, I treat Pc
l (j,A) ∀j < i as given. The admission probability P

a
l (i,A)

is recursively determined by the first i − 1 students’ choice probabilities, as is student i’s

choice. Therefore, this lemma indicates that the equilibrium of this game and the choice of

student i are unique almost surely.

Although the strategies represented in the model are difficult for the students, most of the

students will still act as the model suggests and will not perform different sophistication for

the following two reasons. First, as noted, the college entrance exam is the most important

exam in China and, in general, in students’ lives. Second, I consider only Round 1 admission

in this paper. Fewer than the top 10% of students are considered in this round, and the

quality of the colleges involved in this round is better than that in other rounds. Students in

this round cherish the opportunities they are presented with, and thus, will try extra hard

to perform optimally.

I now want to estimate the college’s attractiveness ξl. Then, I will know the preferences

of the students. The next theorem establishes a mapping from the quota A and the cutoff

threshold N to ξ

Theorem 1. For all l, when Nl →∞, Al/Nl − 1/Nl

Nl∑
i=1

P
c
l (i,A)

a.s.→ 0

The proof is provided in Appendix D.2 on page 41. Intuitively, Al/Nl is from the actual
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choices, while 1/Nl

Nl∑
i=1

P
c
l (i,A) is from the expected choices. In the large sample, the two

terms are equivalent due to the law of large numbers. The law of large numbers can be

used to further loosen the assumption of the behaviors of the students: even if some of the

students do not perform optimally, their misbehavior will be averaged and will diminish in

the large sample. I have two remarks on this theorem. First, ε are the random variables in

the theorem. They constitute the actual choices of the students and, thereafter, Al. Second,

the cutoff Nl being large requires the total number of students admitted to be large, which

is equivalent to admission quotas of most colleges being large and/or the number of colleges

being large. If the admission quotas are not large for at least some colleges, the BM may not

collapse to the DA. In an extreme example, suppose there are T colleges with the same mean

attractiveness, where T is a large number. Each college admits one student. For student T/2,

the admission probability of any college is 50%, and the student may be not admitted by

the favorite feasible college. This theorem links A, N and ξ in the large sample. Thousands

or even tens of thousands of students are admitted in Round 1; thus, the assumption of

a large sample is valid. Ψ : ξ,A → N denotes the mapping from ξ and A to N , while

Ψ−1 : N ,A → ξ denotes the mapping from N and A to ξ. I use the second mapping

to estimate the mean attractiveness ξ and therefore reveal the true preferences of students.

Notably, N are assumed to be integers in the theorem. If N are not only integers, I extend

the theorem to be

Al
Nl

− 1

Nl

( bNlc∑
i=1

P
c
l (i,A) + (Nl − bNlc)Pc

l (bNlc+ 1,A)
)

= 0,∀l

where bNlc is the largest integer not larger than Nl. This ensures that both mappings
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will be continuous. The identification, estimation, and counterfactual analysis methods are

discussed in Appendix A and B.

5. Data

To recover the mean attractiveness ξ and compare the two mechanisms, I need the data of

the quotas A and the cutoff thresholds N . I collect data for Guangxi, Hebei, and Sichuan15

from different sources. In Guangxi, the Guangxi Provincial Academy of Recruitment and

Examination (Gvangjsih Cauhswngh Gaujsi Yen in the Zhuang language) composed guides

for the college entrance examination (“Gaokao Zhinan”) in 2007, 2008, and 2009. These

guides include the quota for each college, the lowest score for the students admitted to each

college, and the number of students achieving each score in 2006, 2007, and 2008. I calculate

the cutoff threshold for each college from the lowest score for students admitted to each

college and the number of students with each score. In addition, admission is divided into 11

rounds. The first four rounds are Round 0, a round for arts and physical education, Round

1, and Round 1 for college-preparatory education. Only a small proportion of students are

eligible to apply to colleges in the second and fourth round, while the choices of major and

college are limited in Round 0. Thus, most highly ranked students apply in Round 1. In

this paper, I combine Round 1 and Round 1 for college prep into one round and study this

round only. I also assume that all highly ranked students will apply to college in this round.

In Hebei, the Hebei Education Examinations Authority compiled “Statistics of Admission

Score Distribution in Hebei of China’s Colleges and Universities from 2005 to 2007” (“Quan-

15I plot the locations of the three provinces in Figure 1 on page 14.
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Fig. 1. Location of the Three Chinese Provinces

guo Putong Gaoxiao zai Hebei Zhaosheng Luqu Fenshu Fenbu Tongji (2005 – 2007)”). These

statistics include the quota for each college and the lowest score of the students admitted

to each college in 2005, 2006, and 2007. Unfortunately, I could not locate page 166 of these

statistics for science major students, so I do not have the quota or the lowest score of the

students admitted to China University of Mining in 2007 or China University of Mining

(Beijing) in 2005. Therefore, I assume that these two colleges did not admit students for the

given years. In addition, the lowest score of students admitted to Xi’an International Studies

University was 570 for science major students in 2007, lower than the key cutoff threshold

(587). This may be an error in the data; regardless, I address it by again assuming that

this college did not admit science major students in 2007. Since Xi’an International Studies

University in fact admitted only five science majors from Hebei that year, this assumption

does not significantly affect the results. I also collect the number of students achieving each
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score in these three years from Hengshui High School. In admissions, the first three rounds

are Round 0, Round 1A, and Round 1B; most highly ranked students apply in Rounds 1A

and 1B. Because Round 1B is conducted after the completion of Round 1A, the existence of

Round 1B does not affect the study of Round 1A. Therefore, in this paper, I analyze only

Round 1A.

In Sichuan, the Sichuan Recruitment and Examination Information Co. (Sichuan Zhaosheng

Kaoshi Xinxi Zixun Youxiangongsi), a state-owned enterprise supervised by the Sichuan Ed-

ucational Examination Authority, composed guides for the college entrance examination

(“Gaokao Zhinan”) in 2007 and 2008. These guides include the quota for each college, the

lowest score of students admitted to each college, and the number of students achieving each

score, presented in five-score increments, in 2006 and 2007. In the data, the cutoff threshold

(N(l)) of a given college may be smaller than the sum of the quotas of the colleges with

cutoff thresholds stricter than that college (i.e.,
∑l

j=1A(j)), leading to nonexistent results

(i.e., Φ−1 = ∅) based on Theorem 2. This may be caused by errors in the data and/or

my simplifications. To solve this issue, I presume that the top one or two colleges in terms

of cutoff threshold do not admit students. This approach does not significantly affect the

results since these colleges do not admit many students, but it ensures that N(l) >
∑l

j=1A(j)

for ∀l. Specifically, I presume that the Chinese University of Hong Kong and Peking Univer-

sity did not admit arts majors from Sichuan in 2006, while in reality they admitted 1 and

31, respectively; that Tsinghua University did not admit science majors in 2006, while in

fact it admitted 78 students; that Tsinghua University and Peking University did not admit

arts majors in 2007, while in fact they admitted 12 and 29, respectively; and that Tsinghua

University did not admit science majors in 2007, while in fact it admitted 78.
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In addition, the lowest score of Sichuan science majors admitted to Tianjin University

was given as 518 in 2006, much lower than the key cutoff (560). This is an error. Based

on other information provided in the guide, this score should be between 618 and 619, so

I corrected the score to 618 from 518. In the admission process, the first two rounds are

Round 0 and Round 1; I consider only Round 1 in this paper.

The student placement office in each province conducts admissions for science and arts

majors separately; thus, I analyze the two groups separately in the model. Furthermore, in

the years under consideration, students in all three provinces received their exam scores and

the distribution of the scores before applying to college.

6. Empirical Results

The results are similar for all three provinces; thus, I report only the results for science

majors in Guangxi for 2008 (the other results are reported in Table I – IV on Page 22

– 24). For the BM model, Figure 2 on page 17 presents the top ten colleges in terms

of attractiveness ξl. The attractiveness of Tsinghua University and Peking University, the

top two colleges on the Chinese mainland, is much higher than that of all other colleges.

Most students will definitely choose one of these two if they have a reasonable chance to be

admitted. In addition, the attractiveness of all colleges other than the top seven is negative.

I emphasize that attractiveness is the average preference of the students; if a given student

chooses a college, she must receive nonnegative utility from it because she receives zero from

the outside option. A student may be interested only in some small number of colleges (such

as high-ranking ones) and thus may receive positive utility only from these colleges. Thus,
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the average preference (or attractiveness) is negative for most colleges.

Fig. 2. Attractiveness ξl of Top 10 Universities for Science Major Students in Guangxi for
2008

Then, I simulate and compare the BM and DA based on estimated attractiveness. The

cumulative welfare change when switching from the BM to DA is reported in Figure 3,

on page 18, and the individual change is reported in Figure 4, on page 19. In these two

graphs, the x-axis is the rank of a student, and the y-axis is the average utility change for

all students ranked slightly better than the student (Figure 3) or the utility change of this

student (Figure 4). The two graphs both start from 0% on the x-axis. The two mechanisms

are equivalent for the top students, who are able to choose any college without worrying

about rejection. In addition, the two graphs also show that well-ranked students benefit

from the switch while badly ranked students suffer. However, Figure 5 on page 20 indicates

that only 129 (0.9%) students in fact benefit from the switch, while 14241 students are above

the key cutoff threshold. All of these students are among the top 197 students, as shown

in Figure 4. Social welfare would increase after the switch only if fewer than 335 students
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existed, as suggested in Figure 3.

Fig. 3. Cumulative Welfare Change When Switching from the BM to DA for Science Major
Students in Guangxi for 2008

In the two graphs, “A” is the sum of the quotas of all colleges, and “L” is the key

cutoff threshold. Students are considered for admission in this round only when they have

scores higher than the key cutoff threshold. Therefore, the welfare of all eligible students

decreases 1.96% after the switch from the BM to DA. If I assume that all students can apply

to these colleges, their utility decreases 2.49% after the switch. I emphasize here that the

former estimate (1.96%) underestimates the real welfare loss because I consider only the first

step of the BM in the model, whereas those students rejected in the first step may also be

admitted in the second step. Thus, students may receive higher utility in the real BM than

in the BM model. In the latter estimate (2.49%), colleges admit enough students under the

BM model, which then collapses to the real BM.

In Figure 6, on page 21, the cutoff thresholds of all colleges become stricter after the

switch. This is the reason for the welfare loss: a student who can be admitted under the BM
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Fig. 4. Individual Welfare Change When Switching from the BM to DA for Science Major
Students in Guangxi for 2008

may be rejected under the DA. As shown in Figures 3 and 4, students who receive scores

slightly higher than the key cutoff threshold suffer most from the switch. In Guangxi (as

well as in Sichuan), the quality of colleges in this round is much higher than that in the

latter rounds; students around the key cutoff threshold can be admitted under the BM but

not under the DA because of the stricter cutoff, so they receive much lower utility under the

DA.

In Figure 4, the results are noisy for the bottom students. The two mechanisms are

equivalent for these students because the bottom students receive rejection and zero utility

in both mechanisms. The relative error of the simulation increases when utility is close to

zero, which contributes to the noisiness of the results.
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Fig. 5. Histogram of Welfare Change When Switching from the BM to DA of Science Major
Students above the Key Cutoff Threshold (Top 14241 Students) in Guangxi for 2008

7. Conclusion

In this paper, I simulated and compared the empirical performance of the BM and DA in

college admissions in China. I constructed a model of the BM and employed it to estimate

the attractiveness of Chinese colleges in three Chinese provinces. Then, I conducted coun-

terfactuals to empirically compare the BM and DA in these three provinces for the given

years. I found that not only is the BM superior to the DA in terms of total welfare but also

that most students suffer from the switch from the BM to DA.

This paper makes the following contributions. First and most importantly, this paper

shows that from a social welfare perspective, the BM is a better approach than the DA to

conducting college admissions in China. Historically, the BM was implemented in all the

provinces of the Chinese mainland, whereas currently, the DA is employed by most provinces.

The results indicate that this switch from the BM to DA has been costly: the total welfare

20



Fig. 6. Cutoff Threshold of Each University in the BM vs. DA for Science Major Students
in Guangxi for 2008

of students has decreased 1.73% – 6.63% due to the switch. On the Chinese mainland,

approximately 150 colleges admit students in Round 1 (aka key colleges). In the case of a

1.73% – 6.63% welfare loss, these colleges need to improve their quality by 1.73% – 6.63% to

compensate, equivalent to constructing 2.595 – 9.945 more key colleges, assuming that the

cost of each unit of quality is the same. Further, if I assume that one key college is worth 1

billion dollars, the switch costs 2.595 – 9.945 billion dollars.

Second, to the best of my knowledge, the existing literature considers only the coarse

priorities scenario for comparing the two mechanisms under cardinal preferences. This paper

indicates that the BM performs better than the DA not only in the coarse priorities scenario,

as discussed in the literature, but also in the strict priorities scenario, as described in the

Chinese case.

Third, departing from the literature, my model does not need micro data on the submitted

preferences of individual students; instead, the model requires only the admission quota and
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Table I: Top Ten Colleges in terms of ξl in Guangxi
Arts Majors for 2006 Science Majors for 2006

Ranking Name ξl Name ξl
1 Peking University 19.796 Tsinghua University 2.530
2 Fudan University 5.682 Shanghai Jiao Tong University 1.837
3 Renmin University of China 4.303 University of Science & Technology China 1.510
4 University of International Business and Economics 1.866 Peking University 1.173
5 City University Hong Kong 1.266 Nanjing University 0.809
6 China University of Political Science and Law 0.823 Guangxi University -0.920
7 Beijing Normal University 0.333 Xi’an Jiao Tong University -0.950
8 Sun Yat-sen University 0.205 Sun Yat-sen University -0.963
9 Wuhan University 0.117 Central South University -1.041
10 Nanjing University -0.117 Central University of Finance and Economics -1.174

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00745 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00194

Arts Majors for 2007 Science Majors for 2007

1 Peking University 6.124 Peking University 9.502
2 Renmin University of China 1.271 Tsinghua University 7.812
3 Fudan University 0.560 University of Science & Technology China 0.557
4 Nanjing University 0.472 Zhejiang University 0.144
5 Beijing Foreign Studies University -0.199 Guangxi University -0.645
6 Zhongnan University of Economics and Law -0.379 Nanjing University -1.067
7 Guangxi University -0.480 Beihang University -1.233
8 Guangxi Normal University -0.688 Guangxi Medical University -1.287
9 Wuhan University -0.877 Hunan University -1.322
10 Sun Yat-sen University -1.059 Nankai University -1.357

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00152 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00560

Arts Majors for 2008 Science Majors for 2008

1 Tsinghua University 30.256 Tsinghua University 10.782
2 Peking University 18.050 Peking University 7.024
3 Renmin University of China 3.713 Shanghai Jiao Tong University 2.367
4 Nanjing University 2.188 Peking University Health Science Center 1.916
5 University of International Business and Economics 1.362 Zhejiang University 1.589
6 Sun Yat-sen University 1.289 University of Science & Technology China 1.471
7 China University of Political Science and Law 0.552 Huazhong University of Science and Technology 0.189
8 Wuhan University 0.360 University of International Business and Economics -0.268
9 Nankai University 0.264 Wuhan University -0.379
10 Zhongnan University of Economics and Law -0.104 Fudan University -0.510

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.01523 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00327

cutoff threshold for each college. Micro data are difficult to obtain and may be restricted for

privacy reasons; my use of public data makes the results easier to replicate and makes the

model potentially more widely usable.

In summary, in this paper, I find that the BM outperforms the DA in college admissions

in China. However, is BM the best possible mechanism? Future studies may want to propose

new mechanisms that are better than BM or, conversely, to prove that the BM yields the

highest welfare in college admissions in China.
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Table II: Top Ten Colleges in terms of ξl in Hebei
Arts Majors for 2005 Science Majors for 2005

Ranking Name ξl Name ξl
1 Peking University 3.634 Tsinghua University 1.848
2 Fudan University 1.167 Peking University 1.067
3 Zhejiang University -0.109 Zhejiang University 0.459
4 University of International Business and Economics -0.185 Tianjin University 0.096
5 Wuhan University -0.439 Peking University Health Science Center -0.070
6 Nankai University -0.440 University of Science & Technology China -1.238
7 China University of Political Science and Law -0.454 University of Science and Technology Beijing -1.313
8 Tsinghua University -0.515 Harbin Institute of Technology (Harbin) -1.474
9 Beijing Normal University -0.576 Huazhong University of Science and Technology -1.484
10 Renmin University of China -0.814 Beijing Jiaotong University -1.490

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00077 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00162

Arts Majors for 2006 Science Majors for 2006

1 Peking University 5.901 Tsinghua University 6.926
2 Tsinghua University 4.255 Peking University 4.849
3 Renmin University of China 3.408 Beihang University 0.687
4 Zhejiang University 0.138 Zhejiang University 0.510
5 Nankai University 0.066 University of Science & Technology China -0.227
6 Nanjing University -0.523 Xi’an Jiao Tong University -0.969
7 Xiamen University -0.694 Harbin Institute of Technology (Harbin) -1.399
8 University of International Business and Economics -1.126 Dalian University of Technology -1.476
9 Jilin University -1.281 Nanjing University -1.586
10 Zhongnan University of Economics and Law -1.406 Xi’an Electronic and Science University -1.663

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00067 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00174

Arts Majors for 2007 Science Majors for 2007

1 Peking University 8.101 Tsinghua University 8.920
2 Tsinghua University 3.779 Peking University 5.421
3 Renmin University of China 2.809 Shanghai Jiao Tong University 2.344
4 Fudan University 1.372 Peking University Health Science Center 2.041
5 Zhejiang University -0.030 Beihang University 1.966
6 Central University of Finance and Economics -0.379 Fudan University 0.450
7 Nanjing University -0.396 Zhejiang University 0.356
8 China University of Political Science and Law -0.460 Xi’an Jiao Tong University 0.281
9 Nankai University -0.689 Nanjing University 0.188
10 Beijing Foreign Studies University -0.693 Nankai University -0.184

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00255 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00203
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Table III: Top Ten Colleges in terms of ξl in Sichuan
Arts Majors for 2006 Science Majors for 2006

Ranking Name ξl Name ξl
1 Tsinghua University 3.489 Peking University Health Science Center 6.255
2 Renmin University of China 2.864 Peking University 5.422
3 Fudan University 1.322 Zhejiang University 4.426
4 Sichuan University 0.053 University of Science & Technology China 3.681
5 Southwestern University of Finance and Economics -0.046 Fudan University 3.346
6 Nanjing University -0.284 Shanghai Jiao Tong University 2.660
7 Wuhan University -0.742 Beihang University 1.363
8 Zhejiang University -0.793 Nanjing University 1.221
9 Tongji University -1.009 Beijing University of Posts and Telecommunications 1.164
10 Nankai University -1.248 Shanghai University of Finance and Economics 0.711

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00044 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00097

Arts Majors for 2007 Science Majors for 2007

1 Fudan University 2.830 Peking University 8.208
2 University of International Business and Economics 0.931 Fudan University 8.206
3 Sichuan University 0.850 Peking University Health Science Center 6.472
4 Beijing Foreign Studies University 0.816 Shanghai Jiao Tong University 6.290
5 Southwestern University of Finance and Economics 0.791 Zhejiang University 5.091
6 Nanjing University 0.582 University of Science & Technology China 4.353
7 Zhejiang University 0.491 Renmin University of China 3.381
8 China University of Political Science and Law 0.403 Tongji University 3.156
9 Nankai University 0.196 Nanjing University 2.887
10 Shanghai University of Finance and Economics -0.719 Beihang University 2.471

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00024 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00059

Table IV: BM vs. DA

Province Year Major G I Breakeven Loss (L) Loss A La

Guangxi 2006 Arts 241 (6.75%) 308 (8.63%) 546 (15.30%) -5.87% -6.63% 2524 3570
Guangxi 2006 Science 232 (1.77%) 1049 (8.01%) 306 (2.34%) -2.87% -3.26% 8960 13098
Guangxi 2007 Arts 65 (1.59%) 112 (2.75%) 172 (4.22%) -2.45% -3.50% 2898 4077
Guangxi 2007 Science 1506 (10.65%) 4793 (33.91%) 278 (1.97%) -1.50% -2.00% 9794 14135
Guangxi 2008 Arts 140 (3.13%) 211 (4.72%) 278 (6.22%) -3.67% -4.37% 2967 4468
Guangxi 2008 Science 129 (0.91%) 197 (1.38%) 335 (2.35%) -1.98% -2.49% 9875 14242
Hebei 2005 Arts 63 (1.15%) 226 (4.12%) 291 (5.31%) -4.31% -4.34% 1743 5480
Hebei 2005 Science 430 (1.86%) 3020 (13.05%) 379 (1.64%) -1.93% -1.94% 9476 23145
Hebei 2006 Arts 36 (0.64%) 60 (1.06%) 96 (1.70%) -4.13% -4.16% 1839 5656
Hebei 2006 Science 210 (0.88%) 5125 (21.47%) 551 (2.31%) -1.69% -1.73% 9187 23866
Hebei 2007 Arts 39 (0.68%) 65 (1.13%) 105 (1.82%) -3.94% -3.98% 1722 5764
Hebei 2007 Science 236 (0.93%) 544 (2.14%) 846 (3.33%) -3.52% -3.52% 8947 25437
Sichuan 2006 Arts 62 (1.31%) 2090 (44.15%) 155 (3.27%) -2.86% -3.77% 3452 4734
Sichuan 2006 Science 307 (1.19%) 731 (2.84%) 1293 (5.03%) -3.02% -3.39% 20672 25715
Sichuan 2007 Arts 300 (6.57%) 454 (9.94%) 784 (17.16%) -4.03% -4.95% 3488 4569
Sichuan 2007 Science 541 (2.09%) 1962 (7.59%) 2098 (8.12%) -3.27% -3.58% 20948 25839

a G: the number of students who benefit from the switch and the proportion of these students in all students above the
key cutoff threshold in parentheses (i.e. Figure 5 on page 20).
I: the last student in terms of rank who benefits from the switch and is above the key cutoff threshold; the proportion
of the rank in the key cutoff in parentheses (i.e., the first vertical line from the left in Figure 4 on page 19).
Breakeven: the maximum number of students where social welfare may increase after the switch; the percentage of
this number in the key cutoff in parentheses (i.e. the first vertical line from the left in Figure 3 on page 18).
Loss (L) and Loss: the welfare loss of the students above the key cutoff and that of all the students.
A: the sum of the quotas of all colleges.
L: the key cutoff threshold.
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Online Appendix (Not For Publication)

Appendix A. Discussions on Identification

In this section, I consider a more general form of the utility function, where the outside
option is εi0 instead of 0. In the following context, I will prove the similarity of the BM
and DA when admission quotas A are large. With the help of the DA model, I will show
the identification of ξ under the BM. First, the DA is equivalent to the serial dictatorship
mechanism in college admissions in China because a student has the same priority in any
college (Abdulkadiroglu and Sönmez, 2003). Therefore, in the DA, students are assigned to
the best available colleges. For instance, if a student has preference l1 � l2 � l3 � l4 · · · and
colleges l1 and l2 have admitted enough students prior to that student while l3 has not, in the
DA, the student is assigned to l3. Any mechanism assigning students to the best available
colleges is equivalent to the DA.

Let me construct an imaginary mechanism. This mechanism is the same as the BM,
except that the students are able to observe the cutoff thresholds before submitting their
preferences, which is impossible in the real world. In this case, students will know which
colleges will reject them based on their ranking. Thus, the students will list the best available
college as their first choice, and they will be admitted by these colleges. Thus, this imaginary
mechanism is equivalent to the DA, and I can use this imaginary mechanism to study the
DA.

Theorem 1 requires independence among choices across students (i.e., ∀l, 1l(1), 1l(2), ...,
1l(Nl) are independent). I emphasize that this assumption still holds given freely available
information on the cutoff thresholds. To see why, I denote whether a student i chooses college
l as her first choice by 1l(i|N ); N is a random vector determined by the actual choices
of the students, meaning that the choice of a student may be affected by the choices of
other students through N . However, Pc

l (i,A|N )P(N ) = P
c
l (i,A,N ) = P

c
l ((i,A|N ),N ).

1l(i|N ) andN are independent, so 1l(i|N ) is independent with 1l(−i|N ). Intuitively, I may
provide fake cutoff thresholds N f to the students; in such a situation, student choices will
be unrelated due to the fake information, while the fake cutoff thresholds N f may coincide
with the real ones N .

In this imaginary mechanism, I rank cutoff thresholds Nl from smallest to largest, as
N(1), N(2), ..., N(L). The top N(1) students can be admitted by any college and understand
this (i.e., ∀l Pa

l (i,A) = 1). Thus, these students compare the utility from each of L colleges,
as well as from the outside option, and choose the best one. Student N(1) + 1 to student
N(2) will be rejected by college (1) but accepted by other colleges (i.e., ∀l 6= (1) Pa

l (i,A) = 1
and Pa

(1)(i,A) = 0). Then, the students compare the utility from each of the L− 1 colleges
and from the outside option. Next, student N(L−1) + 1 to student N(L) will be rejected by
any college except college (L) (i.e., ∀l 6= (L) Pa

l (i,A) = 0 and Pa
(L)(i,A) = 1); thus, these

students compare the utility from college (L) and from the outside option. The remaining
students will be rejected by all colleges (i.e., ∀l Pa

l (i,A) = 0) and fully understand this fact;
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thus, these students choose the outside option.
The general expression of this model is tedious. I consider εil+γ to be i.i.d. extreme value

type 1 distributed, where γ = 0.5772156649... is the Euler constant. This assumption ensures
that the mean of εil is zero. The proof of other types of distributions of private information
is similar. From Theorem 1, I obtain the relationship between the average behavior and
mean behavior.

A(1)

N(1)

−
exp (ξ(1))

1 +
L∑
l=1

exp (ξ(l))

a.s.→ 0

A(2)

N(2)

−
N(1)

N(2)

exp (ξ(2))

1 +
L∑
l=1

exp (ξ(l))

−
N(2) −N(1)

N(2)

exp (ξ(2))

1 +
L∑
l=2

exp (ξ(l))

a.s.→ 0

· · ·
A(L)

N(L)

−
N(1)

N(L)

exp (ξ(L))

1 +
L∑
l=1

exp (ξ(l))

−
N(2) −N(1)

N(L)

exp (ξ(L))

1 +
L∑
l=2

exp (ξ(l))

− . . .−
N(L) −N(L−1)

N(L)

exp (ξ(L))

1 + exp (ξ(L))

a.s.→ 0

(2)

where Al/Nl is the average behavior, and the other terms are the mean behavior. Similar
to the BM, the DA model relates ξ, A and N by Equation 2. Φ : ξ,A → N denotes the
mapping from ξ and A to N , and Φ−1 : N ,A→ ξ denotes the mapping from N and A to
ξ in the simplified model.

Theorem 2. Based on Φ−1

ξ(l) = log

(
1 +

L∑
k=l+1

exp (ξ(k))
)
Al

N(l) −
l∑

k=1

A(k)

for all l < L and

ξ(L) = log
A(L)

N(L) −
L∑
k=1

A(k)

Theorem 3. Rank Al/ exp (ξl) from smallest to largest as A(1)/ exp (ξ(1)), A(2)/ exp (ξ(2)),
..., A(L)/ exp (ξ(L)). Based on Φ

N(l) =
l∑

k=1

A(k) +

1 +
L∑

k=l+1

exp (ξ(k))

exp (ξ(l))
A(l)
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for all l < L and

N(L) =
L∑
k=1

A(k) +
1

exp (ξ(L))
A(L)

Proof. First, I shall prove Theorem 2. I know N and A. I want to obtain ξ. Equation 2
tells us the relationship.

A(l) = N(1)

exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

+(N(2)−N(1))
exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

+. . .+(N(l)−N(l−1))
exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

(3)

A(l+1) = N(1)

exp (ξ(l+1))

1 +
L∑
k=1

exp (ξ(k))

+(N(2)−N(1))
exp (ξ(l+1))

1 +
L∑
k=2

exp (ξ(k))

+. . .+(N(l+1)−N(l))
exp (ξ(l+1))

k +
L∑

k=l+1

exp (ξ(k))

(4)
where Equation 3 and Equation 4 are two lines of Equation 2. I multiply Equation 3 by
exp (ξl+1)/ exp (ξl) and substitute the result into Equation 4. I obtain

A(l+1) = A(l)

exp (ξ(l+1))

exp (ξ(l))
+ (N(l+1) −N(l))

exp (ξ(l+1))

1 +
L∑

k=l+1

exp (ξ(k))

Rearranging the equation yields

N(l+1) −N(l) = A(l+1) + A(l+1)

1 +
L∑

k=l+2

exp (ξ(k))

exp (ξ(l+1))
− A(l)

1 +
L∑

k=l+1

exp (ξ(k))

exp (ξ(l))

where I define
L∑

k=L+1

exp (ξ(k)) = 0. Summing N(2)−N(1), N(3)−N(2), ..., N(l+1)−N(l) yields

N(l+1) =
l+1∑
k=1

A(k) +

1 +
L∑

k=l+2

exp (ξ(k))

exp (ξ(l+1))
A(l+1) (5)

Rearrangement then gives

ξ(l+1) = log

(
1 +

L∑
k=l+2

exp (ξ(k))
)
Al+1

N(l+1) −
l+1∑
k=1

A(k)

Theorem 2 has been proven.
Now let us consdier Theorem 3. If I know how to map l to (l), the proof has been

completed in Equation 5. However, I need to know N to generate the mapping from l to
(l). N(l) is the lth smallest value in N . I only know A and ξ. I shall prove Al/ exp (ξl)
generating the same mapping from l to (l).
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First, I show the existence of N . I rank Al/ exp (ξl) from the smallest to the largest as
A[1]/ exp (ξ[1]), A[2]/ exp (ξ[2]), ..., A[L]/ exp (ξ[L]). I have

A[l+1]

exp (ξ[l+1])
≥

A[l]

exp (ξ[l])

⇐⇒(1 +
L∑

k=l+1

exp (ξ[k]))
A[l+1]

exp (ξ[l+1])
≥ (1 +

L∑
k=l+1

exp (ξ[k]))
A[l]

exp (ξ[l])

⇐⇒A[l+1] + (1 +
L∑

k=l+2

exp (ξ[k]))
A[l+1]

exp (ξ[l+1])
≥ (1 +

L∑
k=l+1

exp (ξ[k]))
A[l]

exp (ξ[l])

⇐⇒
l+1∑
k=1

A[k] + (1 +
L∑

k=l+2

exp (ξ[k]))
A[l+1]

exp (ξ[l+1])
≥

l∑
k=1

A[k] + (1 +
L∑

k=l+1

exp (ξ[k]))
A[l]

exp (ξ[l])

(6)

If I let

N[l] =
l∑

k=1

A[k] + (1 +
L∑

k=l+1

exp (ξ[k]))
A[l]

exp (ξ[l])

I have N[l+1] ≥ N[l]. N[l] is one set of solutions, and N exists.
Then, I show the uniqueness of N . If I have Al/ exp (ξl) > Al′/ exp (ξl′) ⇐⇒ Nl > Nl′

and Al/ exp (ξl) = Al′/ exp (ξl′) ⇐⇒ Nl = Nl′ , N[l] is the unique set of solutions as the
mapping from l to [l] and that from l to (l) are equivalent. If N is not unique, I have
another set of Nl such that ∃l, l′, Nl < Nl′ , Al/ exp (ξl) ≥ Al′/ exp (ξl′) or ∃l, l′, Nl = Nl′ ,
Al/ exp (ξl) 6= Al′/ exp (ξl′). In either case, the order of Nl is different from the order of
Al/ exp (ξl).

Case 1 ( ∃l, l′, Nl < Nl′ , Al/ exp (ξl) ≥ Al′/ exp (ξl′)).

I rank N from smallest to the largest as N(1), N(2), ..., N(L). l = (m) and l′ = (m′).
Since Nl < Nl′ , m < m′. From Equation 6, I have A(m)/ exp (ξ(m)) ≤ A(m+1)/ exp (ξ(m+1))
≤A(m+2)/ exp (ξ(m+2)) . . . ≤ A(m′)/ exp (ξ(m′)). If all equalities hold, N(m) = N(m+1) . . . =
N(m′). This contradicts my assumption. Thus, I have A(m)/ exp (ξ(m)) < A(m′)/ exp (ξ(m′)).
This contradicts Al/ exp (ξl) ≥ Al′/ exp (ξl′).

Case 2 (∃l, l′, Nl = Nl′ , Al/ exp (ξl) 6= Al′/ exp (ξl′)).

I apply the same strategy as in Case 1. N(m) = N(m′) indicatesA(m)/ exp (ξ(m)) =A(m+1)/ exp (ξ(m+1))
. . . = A(m′)/ exp (ξ(m′)). This contradicts Al/ exp (ξl) 6= Al′/ exp (ξl′).

Therefore, the mapping l→ (l) generated from Al/ exp (ξl) and the mapping from Nl are
equivalent. N is unique.

The two theorems generate a one-to-one mapping between ξ and N given A. The
calculation is simple. However, what is the relationship between the BM and DA?
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Theorem 4. Ψl/Al = Φl/Al and Ψ−1
l = Φ−1

l assuming (1) Nl → ∞ and Al/Nl > 0 for ∀l;
(2) Nl/Nl′ is finite for any l and l′; (3) α is sufficiently small; and (4) εil of Ψl has the same
distribution as that of Φl.

Proof. Let us consider the full model. I present another representation of Pa
l (i,A)

P
a
l (i,A) = P(

i−1∑
j=1

1l(j) < Al) (7)

Student i can be accepted by college l if and only if fewer than Al of the top i− 1 students
choose college l. Pa

l (i,A) = 1 for i ≤ Al. I only need to consider i > Al. I have

1

i− 1

i−1∑
j=1

1l(j)−
1

i− 1

i−1∑
j=1

P
c
l (j,A)

a.s.→ 0

The proof is the same as that of Theorem 1. Al/Nl > 0, so i → ∞ when Nl → ∞ and
i > Al. I obtain

P(
1

i− 1

i−1∑
j=1

P
c
l (j,A)− Nl

i− 1
ν <

1

i− 1

i−1∑
j=1

1l(j) <
1

i− 1

i−1∑
j=1

P
c
l (j,A) +

Nl

i− 1
ν) = 1

⇐⇒P(
1

Nl

i−1∑
j=1

P
c
l (j,A)− ν < 1

Nl

i−1∑
j=1

1l(j) <
1

Nl

i−1∑
j=1

P
c
l (j,A) + ν) = 1

⇐⇒P(
i−1∑
j=1

P
c
l (j,A)− νNl <

i−1∑
j=1

1l(j) <
i−1∑
j=1

P
c
l (j,A) + νNl) = 1

(8)

where ν is an arbitrary small positive number when Nl is sufficiently large. Using the same
logic, I also have

P(

Nl∑
j=1

P
c
l (j,A)− νNl < Al <

Nl∑
j=1

P
c
l (j,A) + νNl) = 1 (9)

Combining Equation 7, Equation 8 and Equation 9 yields

P

( i−1∑
j=1

P
c
l (j,A) + νNl ≤

Nl∑
j=1

P
c
l (j,A)− νNl

)
≤ Pa

l (i,A) ≤ P
( i−1∑

j=1

P
c
l (j,A)− νNl ≤

Nl∑
j=1

P
c
l (j,A) + νNl

)

⇐⇒P
( i−1∑

j=1

P
c
l (j,A)−

Nl∑
j=1

P
c
l (j,A) ≤ −2νNl

)
≤ Pa

l (i,A) ≤ P
( i−1∑

j=1

P
c
l (j,A)−

Nl∑
j=1

P
c
l (j,A) ≤ 2νNl

)

P
c
l (j,A) has a positive lower bound when Pa

l (j,A) ≥ α. The chance of εil′ < −ξl′ for all
l′ 6= {0, l} does not vanish. If εil′ < −ξ′l (∀l′ 6= {0, l}), εi0 < 0 and εil > −ξl, the student
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chooses college l since she can receive positive utility only from this college. κ > 0 denotes
this lower bound. Pc

l (j,A) ≥ κ. If i ≤ Nl + 1− d2νNl/κe,

P
a
l (i,A)

≥P
( i−1∑
j=1

P
c
l (j,A)−

Nl∑
j=1

P
c
l (j,A) ≤ −2νNl

)
=P
(
−

Nl∑
j=i

P
c
l (j,A) ≤ −2νNl

)
≥P
(
− (Nl − i+ 1)κ ≤ −2νNl

)
= 1

Likewise, when i ≥ Nl + 1 + d2νNl/κe, Pa
l (i,A) = 0 if Pa

l (i−1,A) ≥ α. If Pa
l (i−1,A) < α,

P
a
l (i,A) < α because Pa

l (i,A) ≤ Pa
l (i− 1,A). In both cases, Pa

l (i,A) < α. Student i does
not consider college l. ω denotes a small positive number such that 1 + d2νNl/κe < ωNl for
all l. ν can be an arbitrary small positive number when Nl is large, as can ω.

Consistent with the simplified model, εil + γ is i.i.d. extreme value type 1 distributed.
For college l, I do not count the choice probabilities of the students with 0 ≤ Pa

l (i,A) < 1;
thus, a college admits fewer students at the cutoff line Nl. Mathematically I have

A(l)

N(l)

=
1

N(l)

N(l)∑
i=1

P
c
(l)(i,A)

≥ 1

N(l)

(
N(1)(1− ω)

exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

)

+
1

N(l)

((
N(2)(1− ω)−N(1)(1 + ω)

)
+

exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

)

. . .+
1

N(l)

((
N(l)(1− ω)−N(l−1)(1 + ω)

)
+

exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

)

=
A(l)

N(l)

(N(1)

A(l)

(1− ω)
exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

)

+
A(l)

N(l)

((N(2)

A(l)

(1− ω)−
N(1)

A(l)

(1 + ω)
)

+

exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

)

. . .+
A(l)

N(l)

((N(l)

A(l)

(1− ω)−
N(l−1)

A(l)

(1 + ω)
)

+

exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

)
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where the first equality is used in the full model. (X)+ = X if X > 0 while (X)+ = 0
if X ≤ 0. I ignore the marginal students for college l, whose α ≤ P

a
l (i,A) < 1. The

nonmarginal students have definite beliefs: they act as they do in the simplified model.
Likewise, I count the choice probability of a student with α ≤ Pa

l (i,A) < 1 as 1 for college l,
which causes a college to admit more students at the cutoff line Nl. Mathematically, I have

A(l)

N(l)

=
1

N(l)

N(l)∑
i=1

P
c
(l)(i,A)

≤ 1

N(l)

(
N(1)(1− ω)

exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

+ 2ωN(1)

)

+
1

N(l)

((
N(2)(1− ω)−N(1)(1 + ω)

)
+

exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

+ 2ωN(2)

)

. . .+
1

N(l)

((
N(l)(1− ω)−N(l−1)(1 + ω)

)
+

exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

+ ωN(l)

)

=
A(l)

N(l)

(N(1)

A(l)

(1− ω)
exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

+ 2ω
N(1)

A(l)

)

+
A(l)

N(l)

((N(2)

A(l)

(1− ω)−
N(1)

A(l)

(1 + ω)
)

+

exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

+ 2ω
N(2)

A(l)

)

. . .+
A(l)

N(l)

((N(l)

A(l)

(1− ω)−
N(l−1)

A(l)

(1 + ω)
)

+

exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

+ ω
N(l)

A(l)

)

In the two equations, N(l′)/A(l) is finite due to my assumptions. ω can be arbitrarily small
when N is sufficiently large. When ω → 0, the full model collapses to the simplified model.
This completes the proof.

This theorem indicates that the two models are equivalent when A is large. Intuitively,
two types of knowledge are relevant here: the actual cutoff thresholds and the expected
cutoff thresholds. We know the actual cutoff thresholds, while the students do not; however,
the students can calculate the expected cutoff thresholds. The two types of knowledge are
similar in the large sample. Most students know which colleges they can be admitted to,
and only a small proportion of students are guessing. Thus, the BM collapses to the DA.
Combining the similarity of the BM and DA and the identification of ξ under the DA, I
have the identification of ξ under the BM. I emphasize that while Theorem 1 requires N to
be large, the present theorem requires A to be large. For example, let us consider a college
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that plans to admit one student. After admission, the admitted student is ranked 3000. In
this case, Al = 1, which is small, while Nl = 3000, which is large. This scenario is common
in college admissions in China because the numbers of students and colleges are both large.
Therefore, A’s being large is more difficult to satisfy. Nonetheless, the two models are similar
even if A is not large, based on the theorem. I employ this similarity to estimate the BM
with the assistance of the DA.

Appendix B. Estimation, Simulation, and Counterfac-

tual Analysis

B.1. Estimation

I cannot simply use Φ−1 to approximate Ψ−1 for three reasons. First, A being large is
unrealistic in most situations, and the two models are not equivalent in a finite sample.
In addition, εi0 = 0 is most reasonable in the BM, while εi0 + γ is extreme value type 1
distributed in the closed-form solution of the DA. Thus, the specifications of the two models
are not exactly identical. Furthermore, the purpose of the paper is to compare the BM with
the DA, so it is unreasonable to assume that the two models are equivalent in the beginning.
Instead, I propose a finite quota remedy (FQR) procedure to estimate Ψ−1.

Step 1: Obtain ξ̂ = Φ−1(N ,A). Here, A is the real admission quotas, and N is initialized
as the real cutoff thresholds. ξ̂ is the estimated attractiveness of the DA model. The
calculation of ξ̂ is simple due to the closed-form expression of Φ−1.

Step 2: Obtain N̂ = Ψ(ξ̂,A). I generate a new set of cutoff thresholds N̂ based on the
estimated attractiveness from the last step and the BM model. If the two models are
not equivalent, N̂ 6= N , and thus Ψ−1(N ,A) 6= ξ̂

Step 3: Set Nζ = N + ζ(N − N̂ )

Step 4: Obtain ξζ = Φ−1(Nζ ,A)

Step 5: Calculate the distance between Ψ(ξζ ,A) and N0 and choose the best ζ as ζ∗. Here,
N0 is the real cutoff thresholds. Steps 3-5 yield the best ξζ by modifying N with the

direction N − N̂ via the line search. ξζ is weakly better than ξ̂ because ξ0 = ξ̂.

Step 6: Set new N = Nζ∗ and go to Step 1.

In Step 5, I do not need perfect optimization; in practice, I randomly select 11 ζs within
[−1, 1] and choose the best one as ζ∗. The procedure stops after 100 iterations. I record ξζ∗
in each iteration, and the best one is denoted by ξ∗16.

Finally, I explain why I am unable to directly use contraction mapping in the estimation.
In Appendix I of Berry, Levinsohn and Pakes (1995), the proof of the contraction mapping

16In the empirical analysis, one iteration needs 11 cores of an Intel Xeon x5650 CPU to run approximately
20 – 100 minutes depending on the number of colleges and the admission quotas; that is, the optimization
requires 367 – 1833 core-hours.
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requires the same sign for all ∂log(Ψl)/∂ξl′ , where l 6= l′. However, the empirical results
indicate that this assumption fails in all cases.

B.2. Simulation

In this section, I will study the performance of FQR and compare it with Φ−1, which uses
the DA model directly to approximate the BM. In Figure 7(a) on page 38, I suppose that
there are two colleges: ξ1 = 3 for college 1 while ξ2 = 5 for college 2. Each college admits
the same number of students (i.e., A1 = A2). I generate their cutoff thresholds using the
BM for the different quotas (i.e., A1 = A2 = 1, 2, . . . , 50); then, I use the cutoff thresholds
N and the quotas A to estimate the attractiveness ξ by either Φ−1 or FQR.

I find the FQR outperforms the DA model. The FQR works well even when the quotas
are small (e.g., A1 = A2 = 5), while Φ−1 does not perform well when A are small. The
model works better when colleges admit more students, which coincides with Theorem 4. If
I suppose that there are three, four, or five colleges instead of two colleges, the results are
similar to Figure 7(a), as reported in Figure 7(b) – 7(d). Therefore, even if the identification
of ξ is not guaranteed under small admission quotas, I can still obtain good estimation results
based on the identification under large admission quotas and the FQR.

B.3. Counterfactural Analysis

I compare the utility of students under the BM and DA. The expected utility of each student
under the BM is calculated from Equation 1. Under the DA, each student will be assigned to
the best available college. Therefore, in each simulation, I generate the preferences of students
from the estimated mean attractiveness ξ and the distribution of private preferences E . Then,
I assign the students to their most preferred available college. I simulate this process 20,000
times.

Appendix C. Boston Mechanism, Deferred Acceptance

Mechanism, Serial Dictatorship Mecha-

nism and Their Variants in College Ad-

missions in China

C.1. Boston Mechanism

Step 1 College l has quota A1
l . The student placement office sends each college a list containing

all students who choose the college as their first choice17. If the list contains more than
A1
l students, college l admits the top A1

l students and rejects the remaining students.
The quota for the next step (A2

l ) is zero. Otherwise, college l admits all the students
on the list, and the remaining quota is A2

l .

17In practice, the office does not send the full list to the colleges. Instead, it sends a list containing slightly
more than A1

l students to college l if more than A1
l students choose college l as their first choice.
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(a) Two Colleges (b) Three Colleges

(c) Four Colleges (d) Five Colleges

Fig. 7. DA Model (Φ−1) vs. FQR for Different Quotas in A Two-, Three-, Four-, or Five-
College World

Step k College l has quota Akl . The student placement office sends each college a list containing
all students who were rejected in Step k − 1 and chose the college as their kth choice.
If the list contains more than Akl students, college l admits the top Akl students and
rejects the remaining students. The quota for the next step (Ak+1

l ) is zero. Otherwise,
college l admits all the students on the list and the remaining quota is Ak+1

l

The mechanism stops when all lists are blank.

C.2. Deferred Acceptance Mechanism

Step 1 College l has quota Al. The student placement office sends each college a list containing
all students who choose the college as their first choice. If the list contains more than
Al students, college l tentatively admits the top Al students and rejects the remaining
students. Otherwise, college l tentatively admits all the students on the list.
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Step k The student placement office sends each college a list containing all students who were
rejected in Step k − 1 and chose the college as their kth choice. College l compares
the students on the list and the ones that have been tentatively admitted. If there are
more than Al students, college l tentatively admits the top Al students and rejects the
remaining students. Otherwise, college l tentatively admits all the students.

The mechanism stops when all lists are blank. All tentatively admitted students are con-
firmed admitted.

C.3. Serial Dictatorship Mechanism

Step 1 College l has quota Al. The student placement office sends the information of the top
student to her first choice – college l11. Since Al11 > 0, the student will be admitted by

the college, and the remaining quota of this college for the next step is A2
l11

= Al11 − 1.

Step k The student placement office sends the information of the kth ranked student to her
first choice – college l1k. If this college has admitted enough students (that is Ak

l1k
= 0),

the student is rejected and the office sends her information to her second choice. If she
is rejected again, the office sends her information to her next choice. If she is admitted
by her h choice – college lhk , the remaining quota of this college for the next step is
Ak+1
lhk

= Ak
lhk
−1. If she is rejected by all the choices on her preference list, she is rejected

in this round.

The mechanism stops when the office has sent the information of all the students to the
colleges. The deferred acceptance mechanism (DA) is equivalent to the serial dictatorship
mechanism (SD) in the Chinese setting because in both mechanisms, the students are as-
signed to the best available college based on their preference lists. I will use the DA and
SD interchangeably in this paper, but it is the SD that is actually implemented in college
admissions in China.

C.4. Variants in College Admissions in China

In China, college admissions has several rounds. In each round, a mechanism is applied.
Most good colleges are involved in and only in Round 1, and most highly ranked students
apply to colleges in Round 1. Thus, I consider only Round 1 for simplicity. In addition, the
ranking is strict. If one student has a higher total score than another student, she is ranked
higher than the other student. If two students have the same total score, their scores for
each part are compared to break the tie.

The students submit their preferences at different times in different provinces. In some
provinces, they submit them before taking the exam. In some provinces, they submit them
after the exam but before the ranking is published. In some provinces, they submit them
after the ranking is published. In this paper, I consider only provinces in the last group.
Moreover, the students do not submit the full list of their preferences; they can submit their
first two to eighty choices, depending on the province.

39



The mechanism also depends on the province and can be either the Boston mechanism
(BM), DA, or a mixture of these two. For example, some provinces apply the BM in the first
step and apply the DA in the following steps. The literature (Haeringer and Klijn, 2009; Wu
and Zhong, 2014) indicates that the first choice is the most important choice in the BM. I
consider a mechanism as the BM if the mechanism applies the BM in its first step.

Appendix D. Proofs

D.1. Proof of lemma 1 on page 10

Lemma 1. Pa
l (i, Al;A−l)

18 = P
a
l (i−1, Al;A−l)(1−Pc

l (i−1,A))+Pa
l (i−1, Al−1;A−l)P

c
l (i−

1,A) for i ≥ 2 and Al ≥ 1, where Pc
l (i,A) is the chance of student i choosing college l. In

addition, Pa
l (1, Al;A−l) = 1 for Al ≥ 1 and Pa

l (i, 0) = 0 for i ≥ 1.

Proof. Student i does not need to consider the choices of the students ranked lower than
her. She considers the first i− 1 students’ choices. Po

l (i, k, A−l) denotes the probability of k
slots of school l having been taken by the first i− 1 students. I decompose Pa

l (i, Al;A−l) as

P
a
l (i, Al;A−l) =

Al−1∑
k=0

P
o
l (i, k, A−l), Al ≥ 1 (10)

If college l admits student i, the quota must not be filled by the first i − 1 students. This
case can be broken down into cases where the first i − 1 students take zero slots, one slot,
..., Al − 1 slots, which results in Equation 10.

In addition, I can express Po
l (i, k, A−l) as

P
o
l (i, k, A−l) =

{
P
o
l (i− 1, k, A−l)(1−Pc

l (i− 1,A)); k = 0, i ≥ 2
P
o
l (i− 1, k, A−l)(1−Pc

l (i− 1,A)) +P
o
l (i− 1, k − 1, A−l)P

c
l (i− 1,A); k > 0, i ≥ 2

(11)
If none of the first i− 2 students chooses college l and student i− 1 does not choose college
l, none of the first i−1 students choose this college. If (1) k of the first i−2 students choose
college l and student i − 1 does not choose college l or (2) k − 1 of the first i − 2 students
choose college l and student i− 1 chooses college l, k of the first i− 1 students choose this
college. These results produce Equation 11.

I start from the initial conditions. If college l does not admit any students, the chance
of being admitted is zero. I have

P
a
l (i, 0;A−l) = 0,∀i ≥ 1

In addition, if college l has a positive quota, the college cannot reject the top-ranked student.
I have

P
a
l (1, Al;A−l) = 1,∀Al ≥ 1

18
P

a
l (i, Al;A−l) = P

a
l (i,A)
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For the case that i ≥ 2 and Al ≥ 2, I have

P
a
l (i, Al;A−l) =

Al−1∑
k=0

P
o
l (i, k, A−l)

=

Al−1∑
k=1

P
o
l (i, k, A−l) +P

o
l (i, 0, A−l)

=

Al−1∑
k=1

P
o
l (i− 1, k, A−l)(1−Pc

l (i− 1,A))

+

Al−2∑
k=0

P
o
l (i− 1, k, A−l)P

c
l (i− 1,A) +P

o
l (i− 1, 0, A−l)(1−Pc

l (i− 1,A))

=Pa
l (i− 1, Al;A−l)(1−Pc

l (i− 1,A)) +P
a
l (i− 1, Al − 1;A−l)P

c
l (i− 1,A)

For the case that i ≥ 2 and Al = 1, I have

P
a
l (i, Al;A−l) = P

o
l (i, 0, A−l)

=Po
l (i− 1, 0, A−l)(1−Pc

l (i− 1,A))

=Pa
l (i− 1, Al;A−l)(1−Pc

l (i− 1,A))

=Pa
l (i− 1, Al;A−l)(1−Pc

l (i− 1,A)) +P
a
l (i− 1, Al − 1;A−l)P

c
l (i− 1,A)

D.2. Proof of theorem 1 on page 11

Theorem 1. For all l, when Nl →∞, Al/Nl − 1/Nl

Nl∑
i=1

P
c
l (i,A)

a.s.→ 0

Proof. 1l(i) is an indicator function that denotes whether student i chooses college l as her
first choice. If 1l(i) = 1, she chooses college l. If 1l(i) = 0, she does not choose the college.
1l(1), 1l(2),..., 1l(Nl) are independent random variables because the private preferences (i.e.,
εil) are independent. Her probability of choosing college l is Pc

l (i,A). The mean of 1l(i) is
1 × Pc

l (i,A) + 0 × (1 − Pc
l (i,A)) = P

c
l (i,A). Let ωl(i) = 1l(i) − Pc

l (i,A). Based on the
variance criterion for averages, Kolmogorov in Corollary 3.22 of Kallenberg (1997), I have

1

Nl

Nl∑
i=1

ωl(i)
a.s.→ 0 (12)

This equation holds if 1
N2

l

Nl∑
i=1

Eω2
l (i) <∞. In addition,

ω2
l (i) =(1l(i)−Pc

l (i,A))2

=12
l (i) + (Pc

l (i,A))2 − 21l(i)P
c
l (i,A)

≤1 + 1 + 2 = 4

41



Thus, 1
N2

l

Nl∑
i=1

Eω2
l (i) ≤ 1

N2
l

Nl∑
i=1

4 = 4
Nl
<∞. Equation 12 holds.

The cutoff line is Nl. Thus, Al of the top Nl students choose college l.
Nl∑
i=1

1l(i) = Al. I

have

1

Nl

Nl∑
i=1

ωl(i) =
1

Nl

Nl∑
i=1

1l(i)−
1

Nl

Nl∑
i=1

P
c
l (i,A) =

Al
Nl

− 1

Nl

Nl∑
i=1

P
c
l (i,A)

a.s.→ 0
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